The Genetic Link Between Creativity and Psychiatric Disease

(www.wikipedia.org)
(www.wikipedia.org)

The biological sciences are in a golden era: the number of advanced technological tools available coupled with innovations in experimental design has led to an unprecedented and accelerating surge in knowledge (at least as far as the number of papers published is concerned). For the first time in history, we are beginning to ask questions in biology that were previously unanswerable.

No field demonstrates this better than genetics, the study of DNA and our genes. With the advent of high-throughput DNA sequencing, genetic information can be acquired literally from thousands of individuals and even more remarkably, can be analyzed in a meaningful way. Genomics, or the study of the complete set of an organism’s DNA or its genome, directly applies these advances to probe answers to questions that are literally thousands of years old.

A recent study, a collaborative effort from scientists in Iceland, the Netherlands, Sweden, the UK, and the US, is an example of power of genomics and to answer these elusive questions.

Power eet al. Nat. Neursci. 2015. Title

The scientists posed an intriguing question: if you are at risk for a psychiatric disorder, are you more likely to be creative? Is there a link between madness and creativity?

Self-portrait with bandaged ear. Vincent van Gogh, 1889. (wikipedia.org)
Self-portrait with bandaged ear. Vincent van Gogh, 1889. (wikipedia.org)

Aristotle himself once said, “no great genius was without a mixture of insanity” and indeed, the “mad genius” archetype has long pervaded our collective consciousness. But Vincent Van Gogh cutting off his own ear or Beethoven’s erratic fits of rage are compelling stories but can hardly be considered empirical, scientific evidence.

But numerous studies have provided some evidence that suggests a correlation between psychiatric disorders and creativity but never before has an analysis of this magnitude been performed.

Genome-wide association studies (GWAS) take advantage of not only the plethora of human DNA sequencing data but also the computational power to compare it all. Quite literally, the DNA of thousands of individuals is lined up and, using advance computer algorithms, is compared. This comparison helps to reveal if specific changes in DNA, or genetic variants, are more common in individuals with a certain trait. This analysis is especially useful in identifying genetic variants that may be responsible for highly complex diseases that may not be caused by only a single gene or single genetic variant, but are polygenic, or caused by many different genetic variants. Psychiatric diseases are polygenic, thus GWAS is useful in revealing important genetic information about them.

This video features Francis Collins, the former head of the Human Genome Project and current director of the National Institutes of Health (NIH), explaining GWAS studies. The video is 5 years old but the concept is still the same (there’s not many GWAS videos meant for a lay audience).

The authors used data from two huge analyses that previously performed GWAS on individuals with either bipolar disorder or schizophrenia compared to normal controls. Using these prior studies, the author’s generated a polygenic risk score for bipolar disorder and for schizophrenia. This means that based on these enormous data sets, they were able to identify genetic variants that would predict if a normal individual is more likely to develop bipolar disorder or schizophrenia. The author’s then tested their polygenic risk scores on 86,292 individuals from the general population of Iceland and success! The polygenic risk scores did associate with the occurrence of bipolar disorder or schizophrenia.

Next, the scientists tested for an association between the polygenic risk scores and creativity. Of course, creativity is a difficult thing to define scientifically. The authors explain, “a creative person is most often considered one who take novel approaches requiring cognitive processes that are different from prevailing modes of thought.” Translation: they define creativity as someone who often thinks outside the box.

In order to measure creativity, the authors defined creative individuals as “belonging to the national artistic societies of actors, dancers, musicians, and visual artists, and writers.”

The scientists found that the polygenic risk scores for bipolar disorder and schizophrenia each separately associated with creativity while five other types of professions were not associated with the risk scores. An individual at risk for bipolar disorder or schizophrenia is more likely to be in creative profession than someone in a non-creative profession.

 The authors then compared a number of other analyses to see if this effect was due to other factors such as number of years in school or having a university degree but this did not alter the associations with being in a creative field.

Finally, the same type of analysis was done with two other data sets: 18,452 individuals from the Netherlands and 8,893 individuals from Sweden. Creativity was assessed slightly differently. Once again creative profession was used but also data from a Creative Achievement Questionnaire (CAQ), which reported achievements in the creative fields described above, was available for a subset of the individuals.

Once again, the polygenic risk scores associated with being in a creative profession to a similar degree as the Icelandic data set; a similar association was found with the CAQ score.

The authors conclude that the risk for a psychiatric disorder is associated with creativity, which provides concrete scientific evidence for Aristotle’s observation all those years ago.

However, future analyses will have to broaden the definition of creativity beyond just narrowly defined “creative” professions. For example, the design of scientific experiments involves a great deal of creativity but is not considered a creative profession and is therefore not included in these analyses, and a similar argument could be made with other professions. Also, no information about which genetic variants are involved or what their function is was discussed.

Nevertheless, this exciting data is an example of the power that huge genomic data sets can have in answering fascinating questions about the genetic basis of human behavior and complex traits.

For further discussion, read the News and Views article, a scientific discussion of the paper, which talks about potential evolutionary mechanisms to explain these associations.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s